Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.260
Filtrar
1.
Nat Commun ; 15(1): 3464, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658536

RESUMO

TnpBs encoded by the IS200/IS605 family transposon are among the most abundant prokaryotic proteins from which type V CRISPR-Cas nucleases may have evolved. Since bacterial TnpBs can be programmed for RNA-guided dsDNA cleavage in the presence of a transposon-adjacent motif (TAM), these nucleases hold immense promise for genome editing. However, the activity and targeting specificity of TnpB in homology-directed gene editing remain unknown. Here we report that a thermophilic archaeal TnpB enables efficient gene editing in the natural host. Interestingly, the TnpB has different TAM requirements for eliciting cell death and for facilitating gene editing. By systematically characterizing TAM variants, we reveal that the TnpB recognizes a broad range of TAM sequences for gene editing including those that do not elicit apparent cell death. Importantly, TnpB shows a very high targeting specificity on targets flanked by a weak TAM. Taking advantage of this feature, we successfully leverage TnpB for efficient single-nucleotide editing with templated repair. The use of different weak TAM sequences not only facilitates more flexible gene editing with increased cell survival, but also greatly expands targeting scopes, and this strategy is probably applicable to diverse CRISPR-Cas systems.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Elementos de DNA Transponíveis/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Transposases/metabolismo , Transposases/genética
2.
Appl Environ Microbiol ; 90(4): e0012924, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470030

RESUMO

Archaeal viruses are among the most enigmatic members of the virosphere, and their diverse morphologies raise many questions about their infection mechanisms. The study of molecular mechanisms underlying virus-host interactions hinges upon robust model organisms with a system for gene expression and deletion. Currently, there are only a limited number of archaea that have associated viruses and have a well-developed genetic system. Here, we report the development of a genetic system for the euryarchaeon Haloferax gibbonsii LR2-5. This strain can be infected by multiple viruses and is a model for the study of virus-host interactions. We created a Hfx. gibbonsii LR2-5 ∆pyrE strain, resulting in uracil auxotrophy, which could be used as a selection marker. An expression plasmid carrying a pyrE gene from the well-established Haloferax volcanii system was tested for functionality. Expression of a GFP-MinD fusion under a tryptophan inducible promoter was fully functional and showed similar cellular localization as in Hfx. volcanii. Thus, the plasmids of the Hfx. volcanii system can be used directly for the Hfx. gibbonsii LR2-5 genetic system, facilitating the transfer of tools between the two. Finally, we tested for the functionality of gene deletions by knocking out two genes of the archaeal motility structure, the archaellum. These deletion mutants were as expected non-motile and the phenotype of one deletion could be rescued by the expression of the deleted archaellum gene from a plasmid. Thus, we developed a functional genetic toolbox for the euryarchaeal virus host Hfx. gibbonsii LR2-5, which will propel future studies on archaeal viruses. IMPORTANCE: Species from all domains of life are infected by viruses. In some environments, viruses outnumber their microbial hosts by a factor of 10, and viruses are the most important predators of microorganisms. While much has been discovered about the infection mechanisms of bacterial and eukaryotic viruses, archaeal viruses remain understudied. Good model systems are needed to study their virus-host interactions in detail. The salt-loving archaeon Haloferax gibbonsii LR2-5 has been shown to be infected by a variety of different viruses and, thus, is an excellent model to study archaeal viruses. By establishing a genetic system, we have significantly expanded the toolbox for this model organism, which will fuel our understanding of infection strategies of the underexplored archaeal viruses.


Assuntos
Proteínas Arqueais , Haloferax volcanii , Haloferax , Vírus , Haloferax/genética , Deleção de Genes , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Regiões Promotoras Genéticas , Vírus/genética , Proteínas Arqueais/genética
3.
Int J Biol Macromol ; 265(Pt 2): 131026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522710

RESUMO

Combining size exclusion chromatography-small angle X-ray scattering (SEC-SAXS) and molecular dynamics (MD) analysis is a promising approach to investigate protein behavior in solution, particularly for understanding conformational changes due to substrate binding in cytochrome P450s (CYPs). This study investigates conformational changes in CYP119, a thermophilic CYP from Sulfolobus acidocaldarius that exhibits structural flexibility similar to mammalian CYPs. Although the crystal structure of ligand-free (open state) and ligand-bound (closed state) forms of CYP119 is known, the overall structure of the enzyme in solution has not been explored until now. It was found that theoretical scattering profiles from the crystal structures of CYP119 did not align with the SAXS data, but conformers from MD simulations, particularly starting from the open state (46 % of all frames), agreed well. Interestingly, a small percentage of closed-state conformers also fit the data (9 %), suggesting ligand-free CYP119 samples ligand-bound conformations. Ab initio SAXS models for N-His tagged CYP119 revealed a tail-like unfolded structure impacting protein flexibility, which was confirmed by in silico modeling. SEC-SAXS analysis of N-His CYP119 indicated pentameric structures in addition to monomers in solution, affecting the stability and activity of the enzyme. This study adds insights into the conformational dynamics of CYP119 in solution.


Assuntos
Proteínas Arqueais , Sistema Enzimático do Citocromo P-450 , Histidina , Ligantes , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , Sistema Enzimático do Citocromo P-450/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica
4.
Nat Commun ; 15(1): 1414, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360755

RESUMO

Archaea play indispensable roles in global biogeochemical cycles, yet many crucial cellular processes, including cell-shape determination, are poorly understood. Haloferax volcanii, a model haloarchaeon, forms rods and disks, depending on growth conditions. Here, we used a combination of iterative proteomics, genetics, and live-cell imaging to identify mutants that only form rods or disks. We compared the proteomes of the mutants with wild-type cells across growth phases, thereby distinguishing between protein abundance changes specific to cell shape and those related to growth phases. The results identified a diverse set of proteins, including predicted transporters, transducers, signaling components, and transcriptional regulators, as important for cell-shape determination. Through phenotypic characterization of deletion strains, we established that rod-determining factor A (RdfA) and disk-determining factor A (DdfA) are required for the formation of rods and disks, respectively. We also identified structural proteins, including an actin homolog that plays a role in disk-shape morphogenesis, which we named volactin. Using live-cell imaging, we determined volactin's cellular localization and showed its dynamic polymerization and depolymerization. Our results provide insights into archaeal cell-shape determination, with possible implications for understanding the evolution of cell morphology regulation across domains.


Assuntos
Proteínas Arqueais , Haloferax volcanii , Forma Celular , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo
5.
Nucleic Acids Res ; 52(7): 3924-3937, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38421610

RESUMO

RNA ligases are important enzymes in molecular biology and are highly useful for the manipulation and analysis of nucleic acids, including adapter ligation in next-generation sequencing of microRNAs. Thermophilic RNA ligases belonging to the RNA ligase 3 family are gaining attention for their use in molecular biology, for example a thermophilic RNA ligase from Methanobacterium thermoautotrophicum is commercially available for the adenylation of nucleic acids. Here we extensively characterise a newly identified RNA ligase from the thermophilic archaeon Palaeococcus pacificus (PpaRnl). PpaRnl exhibited significant substrate adenylation activity but low ligation activity across a range of oligonucleotide substrates. Mutation of Lys92 in motif I to alanine, resulted in an enzyme that lacked adenylation activity, but demonstrated improved ligation activity with pre-adenylated substrates (ATP-independent ligation). Subsequent structural characterisation revealed that in this mutant enzyme Lys238 was found in two alternate positions for coordination of the phosphate tail of ATP. In contrast mutation of Lys238 in motif V to glycine via structure-guided engineering enhanced ATP-dependent ligation activity via an arginine residue compensating for the absence of Lys238. Ligation activity for both mutations was higher than the wild-type, with activity observed across a range of oligonucleotide substrates with varying sequence and secondary structure.


Assuntos
RNA Ligase (ATP) , RNA Ligase (ATP)/metabolismo , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/química , Especificidade por Substrato , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Planococáceas/enzimologia , Planococáceas/genética , Engenharia de Proteínas , Mutação , Modelos Moleculares , Trifosfato de Adenosina/metabolismo , Oligonucleotídeos/metabolismo , Oligonucleotídeos/genética
6.
Nucleic Acids Res ; 52(5): 2530-2545, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38197228

RESUMO

Argonaute (Ago) proteins are present in all three domains of life (bacteria, archaea and eukaryotes). They use small (15-30 nucleotides) oligonucleotide guides to bind complementary nucleic acid targets and are responsible for gene expression regulation, mobile genome element silencing, and defence against viruses or plasmids. According to their domain organization, Agos are divided into long and short Agos. Long Agos found in prokaryotes (long-A and long-B pAgos) and eukaryotes (eAgos) comprise four major functional domains (N, PAZ, MID and PIWI) and two structural linker domains L1 and L2. The majority (∼60%) of pAgos are short pAgos, containing only the MID and inactive PIWI domains. Here we focus on the prokaryotic Argonaute AfAgo from Archaeoglobus fulgidus DSM4304. Although phylogenetically classified as a long-B pAgo, AfAgo contains only MID and catalytically inactive PIWI domains, akin to short pAgos. We show that AfAgo forms a heterodimeric complex with a protein encoded upstream in the same operon, which is a structural equivalent of the N-L1-L2 domains of long pAgos. This complex, structurally equivalent to a long PAZ-less pAgo, outperforms standalone AfAgo in guide RNA-mediated target DNA binding. Our findings provide a missing piece to one of the first and the most studied pAgos.


Assuntos
Proteínas Arqueais , Archaeoglobus fulgidus , Proteínas Argonautas , Archaeoglobus fulgidus/metabolismo , Proteínas Argonautas/metabolismo , Bactérias/genética , Eucariotos/genética , Células Procarióticas/metabolismo , Domínios Proteicos , RNA Guia de Sistemas CRISPR-Cas , Proteínas Arqueais/metabolismo
7.
mBio ; 15(2): e0309223, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38189270

RESUMO

The identification of microbial genes essential for survival as those with lethal knockout phenotype (LKP) is a common strategy for functional interrogation of genomes. However, interpretation of the LKP is complicated because a substantial fraction of the genes with this phenotype remains poorly functionally characterized. Furthermore, many genes can exhibit LKP not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes (conditionally essential genes). We analyzed the sets of LKP genes for two archaea, Methanococcus maripaludis and Sulfolobus islandicus, using a variety of computational approaches aiming to differentiate between essential and conditionally essential genes and to predict at least a general function for as many of the proteins encoded by these genes as possible. This analysis allowed us to predict the functions of several LKP genes including previously uncharacterized subunit of the GINS protein complex with an essential function in genome replication and of the KEOPS complex that is responsible for an essential tRNA modification as well as GRP protease implicated in protein quality control. Additionally, several novel antitoxins (conditionally essential genes) were predicted, and this prediction was experimentally validated by showing that the deletion of these genes together with the adjacent genes apparently encoding the cognate toxins caused no growth defect. We applied principal component analysis based on sequence and comparative genomic features showing that this approach can separate essential genes from conditionally essential ones and used it to predict essential genes in other archaeal genomes.IMPORTANCEOnly a relatively small fraction of the genes in any bacterium or archaeon is essential for survival as demonstrated by the lethal effect of their disruption. The identification of essential genes and their functions is crucial for understanding fundamental cell biology. However, many of the genes with a lethal knockout phenotype remain poorly functionally characterized, and furthermore, many genes can exhibit this phenotype not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes. We applied state-of-the-art computational methods to predict the functions of a number of uncharacterized genes with the lethal knockout phenotype in two archaeal species and developed a computational approach to predict genes involved in essential functions. These findings advance the current understanding of key functionalities of archaeal cells.


Assuntos
Archaea , Proteínas Arqueais , Archaea/genética , Archaea/metabolismo , Genes Essenciais , Genoma Arqueal , Genômica , Fenótipo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo
8.
Mol Microbiol ; 121(4): 742-766, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38204420

RESUMO

Microbial cells must continually adapt their physiology in the face of changing environmental conditions. Archaea living in extreme conditions, such as saturated salinity, represent important examples of such resilience. The model salt-loving organism Haloferax volcanii exhibits remarkable plasticity in its morphology, biofilm formation, and motility in response to variations in nutrients and cell density. However, the mechanisms regulating these lifestyle transitions remain unclear. In prior research, we showed that the transcriptional regulator, TrmB, maintains the rod shape in the related species Halobacterium salinarum by activating the expression of enzyme-coding genes in the gluconeogenesis metabolic pathway. In Hbt. salinarum, TrmB-dependent production of glucose moieties is required for cell surface glycoprotein biogenesis. Here, we use a combination of genetics and quantitative phenotyping assays to demonstrate that TrmB is essential for growth under gluconeogenic conditions in Hfx. volcanii. The ∆trmB strain rapidly accumulated suppressor mutations in a gene encoding a novel transcriptional regulator, which we name trmB suppressor, or TbsP (a.k.a. "tablespoon"). TbsP is required for adhesion to abiotic surfaces (i.e., biofilm formation) and maintains wild-type cell morphology and motility. We use functional genomics and promoter fusion assays to characterize the regulons controlled by each of TrmB and TbsP, including joint regulation of the glucose-dependent transcription of gapII, which encodes an important gluconeogenic enzyme. We conclude that TrmB and TbsP coregulate gluconeogenesis, with downstream impacts on lifestyle transitions in response to nutrients in Hfx. volcanii.


Assuntos
Proteínas Arqueais , Haloferax volcanii , Haloferax volcanii/genética , Glucose/metabolismo , Redes e Vias Metabólicas , Glicoproteínas de Membrana/metabolismo , Fenótipo , Proteínas Arqueais/metabolismo
9.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38203750

RESUMO

The Sm protein superfamily includes Sm, like-Sm (Lsm), and Hfq found in the Eukarya, Archaea, and Bacteria domains. Archaeal Lsm proteins have been shown to bind sRNAs and are probably involved in various cellular processes, suggesting a similar function in regulating sRNAs by Hfq in bacteria. Moreover, archaeal Lsm proteins probably represent the ancestral Lsm domain from which eukaryotic Sm proteins have evolved. In this work, Haloferax mediterranei was used as a model organism because it has been widely used to investigate the nitrogen cycle and its regulation in Haloarchaea. Predicting this protein's secondary and tertiary structures has resulted in a three-dimensional model like the solved Lsm protein structure of Archaeoglobus fulgidus. To obtain information on the oligomerization state of the protein, homologous overexpression and purification by means of molecular exclusion chromatography have been performed. The results show that this protein can form hexameric complexes, which can aggregate into 6 or 12 hexameric rings depending on the NaCl concentration and without RNA. In addition, the study of transcriptional expression via microarrays has allowed us to obtain the target genes regulated by the Lsm protein under nutritional stress conditions: nitrogen or carbon starvation. Microarray analysis has shown the first universal stress proteins (USP) in this microorganism that mediate survival in situations of nitrogen deficiency.


Assuntos
Proteínas Arqueais , Haloferax mediterranei , Haloferax mediterranei/genética , Proteínas Arqueais/genética , Proteínas de Choque Térmico , Archaea , Nitrogênio
10.
Anal Sci ; 40(3): 563-571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38091253

RESUMO

Protein-protein interaction (PPI) analysis is very important for elucidating the functions of proteins because many proteins execute their functions in living cells by interacting with one another. In PPI analysis, methods using the sensor chips are widely employed to obtain quantitative data. However, these methods require that the target proteins be immobilized on the sensor chips, and the immobilization processes can affect the binding of the target proteins to their binding partners. In the present work, we propose a PPI analysis system in which the surface of the living cells is utilized as a sensing platform. In our approach, the target protein is displayed on the cell surface by expressing it as a fusion protein with a membrane protein, and the PPI analysis is then conducted by applying its binding partner labeled with a fluorescent dye to the cell surface. We have constructed a model of this binding analysis system using the interaction between biotin protein ligase (BPL) and biotin carboxyl carrier protein (BCCP), where BCCP was displayed on the cell surface and BPL labeled with fluorescein was applied to the cell surface. Here, a red fluorescent protein, mApple, was attached to the C-terminus of the fusion protein of BCCP with a membrane protein. We evaluated the binding level of the labeled BPL by using the intensity ratios of fluorescence from fluorescein to that from mApple. We found that the binding level of the labeled BPL was stably evaluated at least across 60 min observation period and estimated the binding dissociation constant between BPL and BCCP by equilibrium analysis to be 0.33 ± 0.05 µM.


Assuntos
Proteínas Arqueais , Fluorescência , Proteínas de Membrana , Fluoresceínas , Biotina/metabolismo
11.
Microbiol Spectr ; 11(6): e0281123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37909787

RESUMO

IMPORTANCE: Small proteins containing fewer than 70 amino acids, which were previously disregarded due to computational prediction and biochemical detection challenges, have gained increased attention in the scientific community in recent years. However, the number of functionally characterized small proteins, especially in archaea, is still limited. Here, by using biochemical and genetic approaches, we demonstrate a crucial role of the small protein sP36 in the nitrogen metabolism of M. mazei, which modulates the ammonium transporter AmtB1 according to nitrogen availability. This modulation might represent an ancient archaeal mechanism of AmtB1 inhibition, in contrast to the well-studied uridylylation-dependent regulation in bacteria.


Assuntos
Compostos de Amônio , Proteínas Arqueais , Methanosarcina/genética , Methanosarcina/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Nitrogênio/metabolismo , Compostos de Amônio/metabolismo
12.
Science ; 382(6674): eadd7795, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033054

RESUMO

Photolyases, a ubiquitous class of flavoproteins, use blue light to repair DNA photolesions. In this work, we determined the structural mechanism of the photolyase-catalyzed repair of a cyclobutane pyrimidine dimer (CPD) lesion using time-resolved serial femtosecond crystallography (TR-SFX). We obtained 18 snapshots that show time-dependent changes in four reaction loci. We used these results to create a movie that depicts the repair of CPD lesions in the picosecond-to-nanosecond range, followed by the recovery of the enzymatic moieties involved in catalysis, completing the formation of the fully reduced enzyme-product complex at 500 nanoseconds. Finally, back-flip intermediates of the thymine bases to reanneal the DNA were captured at 25 to 200 microseconds. Our data cover the complete molecular mechanism of a photolyase and, importantly, its chemistry and enzymatic catalysis at work across a wide timescale and at atomic resolution.


Assuntos
Proteínas Arqueais , Reparo do DNA , Desoxirribodipirimidina Fotoliase , Methanosarcina , Dímeros de Pirimidina , Proteínas Arqueais/química , Catálise , Cristalografia/métodos , Desoxirribodipirimidina Fotoliase/química , DNA/química , DNA/efeitos da radiação , Methanosarcina/enzimologia , Conformação Proteica , Dímeros de Pirimidina/química , Raios Ultravioleta
13.
Genome Biol ; 24(1): 253, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932847

RESUMO

BACKGROUND: Archaea, together with Bacteria, represent the two main divisions of life on Earth, with many of the defining characteristics of the more complex eukaryotes tracing their origin to evolutionary innovations first made in their archaeal ancestors. One of the most notable such features is nucleosomal chromatin, although archaeal histones and chromatin differ significantly from those of eukaryotes, not all archaea possess histones and it is not clear if histones are a main packaging component for all that do. Despite increased interest in archaeal chromatin in recent years, its properties have been little studied using genomic tools. RESULTS: Here, we adapt the ATAC-seq assay to archaea and use it to map the accessible landscape of the genome of the euryarchaeote Haloferax volcanii. We integrate the resulting datasets with genome-wide maps of active transcription and single-stranded DNA (ssDNA) and find that while H. volcanii promoters exist in a preferentially accessible state, unlike most eukaryotes, modulation of transcriptional activity is not associated with changes in promoter accessibility. Applying orthogonal single-molecule footprinting methods, we quantify the absolute levels of physical protection of H. volcanii and find that Haloferax chromatin is similarly or only slightly more accessible, in aggregate, than that of eukaryotes. We also evaluate the degree of coordination of transcription within archaeal operons and make the unexpected observation that some CRISPR arrays are associated with highly prevalent ssDNA structures. CONCLUSIONS: Our results provide the first comprehensive maps of chromatin accessibility and active transcription in Haloferax across conditions and thus a foundation for future functional studies of archaeal chromatin.


Assuntos
Proteínas Arqueais , Haloferax volcanii , Cromatina , Histonas/genética , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Nucleossomos , Evolução Biológica , Eucariotos/genética , Proteínas Arqueais/genética
14.
Genes (Basel) ; 14(10)2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37895209

RESUMO

Tubulin, an extensively studied self-assembling protein, forms filaments in eukaryotic cells that affect cell shape, among other functions. The model archaeon Haloferax volcanii uses two tubulin-like proteins (FtsZ1/FtsZ2) for cell division, similar to bacteria, but has an additional six related tubulins called CetZ. One of them, CetZ1, was shown to play a role in cell shape. Typically, discoid and rod shapes are observed in planktonic growth, but under biofilm formation conditions (i.e., attached to a substratum), H. volcanii can grow filamentously. Here, we show that the deletion mutants of all eight tubulin-like genes significantly impacted morphology when cells were allowed to form a biofilm. ΔftsZ1, ΔcetZ2, and ΔcetZ4-6 created longer, less round cells than the parental and a higher percentage of filaments. ΔcetZ1 and ΔcetZ3 were significantly rounder than the parental, and ΔftsZ2 generated larger, flat, amorphic cells. The results show all tubulin homologs affect morphology at most timepoints, which therefore suggests these genes indeed have a function.


Assuntos
Proteínas Arqueais , Haloferax volcanii , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Haloferax volcanii/metabolismo , Forma Celular , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Biofilmes
15.
Carbohydr Res ; 534: 108963, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890267

RESUMO

Archaea are microorganisms that comprise a distinct branch of the universal tree of life and which are best known as extremophiles, residing in a variety of environments characterized by harsh physical conditions. One seemingly universal trait of Archaea is the ability to perform N-glycosylation. At the same time, archaeal N-linked glycans present variety in terms of both composition and architecture not seen in the parallel eukaryal or bacterial processes. In this mini-review, many of the unique and unusual sugars found in archaeal N-linked glycans as identified by nuclear magnetic resonance spectroscopy are described.


Assuntos
Archaea , Proteínas Arqueais , Glicosilação , Archaea/metabolismo , Açúcares , Polissacarídeos , Proteínas Arqueais/metabolismo
16.
Biol Chem ; 404(11-12): 1085-1100, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37709673

RESUMO

Posttranscriptional processes in Bacteria include the association of small regulatory RNAs (sRNA) with a target mRNA. The sRNA/mRNA annealing process is often mediated by an RNA chaperone called Hfq. The functional role of bacterial and eukaryotic Lsm proteins is partially understood, whereas knowledge about archaeal Lsm proteins is scarce. Here, we used the genetically tractable archaeal hyperthermophile Pyrococcus furiosus to identify the protein interaction partners of the archaeal Sm-like proteins (PfuSmAP1) using mass spectrometry and performed a transcriptome-wide binding site analysis of PfuSmAP1. Most of the protein interaction partners we found are part of the RNA homoeostasis network in Archaea including ribosomal proteins, the exosome, RNA-modifying enzymes, but also RNA polymerase subunits, and transcription factors. We show that PfuSmAP1 preferentially binds messenger RNAs and antisense RNAs recognizing a gapped poly(U) sequence with high affinity. Furthermore, we found that SmAP1 co-transcriptionally associates with target RNAs. Our study reveals that in contrast to bacterial Hfq, PfuSmAP1 does not affect the transcriptional activity or the pausing behaviour of archaeal RNA polymerases. We propose that PfuSmAP1 recruits antisense RNAs to target mRNAs and thereby executes its putative regulatory function on the posttranscriptional level.


Assuntos
Proteínas Arqueais , Pyrococcus furiosus , Pequeno RNA não Traduzido , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , RNA Mensageiro/metabolismo , RNA Arqueal/genética , RNA Arqueal/química , RNA Arqueal/metabolismo , Sítios de Ligação , Bactérias/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Pequeno RNA não Traduzido/metabolismo
17.
FEBS Lett ; 597(18): 2334-2344, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532685

RESUMO

The cell membrane of Halobacterium salinarum contains a retinal-binding photoreceptor, sensory rhodopsin II (HsSRII), coupled with its cognate transducer (HsHtrII), allowing repellent phototaxis behavior for shorter wavelength light. Previous studies on SRII from Natronomonas pharaonis (NpSRII) pointed out the importance of the hydrogen bonding interaction between Thr204NpSRII and Tyr174NpSRII in signal transfer from SRII to HtrII. Here, we investigated the effect on phototactic function by replacing residues in HsSRII corresponding to Thr204NpSRII and Tyr174NpSRII . Whereas replacement of either residue altered the photocycle kinetics, introduction of any mutations at Ser201HsSRII and Tyr171HsSRII did not eliminate negative phototaxis function. These observations imply the possibility of the presence of an unidentified molecular mechanism for photophobic signal transduction differing from NpSRII-NpHtrII.


Assuntos
Proteínas Arqueais , Halobacteriaceae , Rodopsinas Sensoriais , Rodopsinas Sensoriais/genética , Rodopsinas Sensoriais/química , Rodopsinas Sensoriais/metabolismo , Halobacterium salinarum/genética , Halobacterium salinarum/química , Halobacterium salinarum/metabolismo , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Transdução de Sinais , Proteínas Arqueais/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/química , Halorrodopsinas/metabolismo
18.
Environ Microbiol Rep ; 15(6): 530-544, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37496315

RESUMO

Global transcriptional regulators are crucial for supporting rapid adaptive responses in changing environments. In Thermococcales, the TrmB sugar-sensing regulator family is well represented but knowledge of the functional role/s of each of its members is limited. In this study, we examined the link between TrmBL4 and the degree of protein secretion in different sugar environments in the hyperthermophilic Archaeon Thermococcus barophilus. Although the absence of TrmBL4 did not induce any growth defects, proteomics analysis revealed different secretomes depending on the sugar and/or genetic contexts. Notably, 33 secreted proteins present in the supernatant were differentially detected. Some of these proteins are involved in sugar assimilation and transport, such as the protein encoded by TERMP_01455 (cyclomaltodextrin glucanotransferase), whereas others have intracellular functions, such as the protein encoded by TERMP_01556 (pyruvate: ferredoxin oxidoreductase Δsubunit). Then, using reverse transcription quantitative polymerase chain reaction experiments, we observed effective transcription regulation by TrmBL4 of the genes encoding at least two ABC-type transporters according to sugar availability.


Assuntos
Proteínas Arqueais , Thermococcus , Thermococcus/genética , Thermococcus/metabolismo , Secretoma , Carboidratos , Açúcares/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo
19.
J Proteomics ; 285: 104941, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37285906

RESUMO

There has been little information about the proteome of bovine faeces or about the contribution to the faecal proteome of proteins from the host, the feed or the intestinal microbiome. Here, the bovine faecal proteome and the origin of its component proteins was assessed, while also determining the effect of treating barley, the major carbohydrate in the feed, with either ammonia (ATB) or sodium propionate (PTB) preservative. Healthy continental crossbreed steers were allocated to two groups and fed on either of the barley-based diets. Five faecal samples from each group were collected on Day 81 of the trial and analysed by quantitative proteomics using nLC-ESI-MS/MS after tandem mass tag labelling. In total, 281 bovine proteins, 199 barley proteins, 176 bacterial proteins and 190 archaeal proteins were identified in the faeces. Mucosal pentraxin, albumin and digestive enzymes were among bovine proteins identified. Serpin Z4 a protease inhibitor was the most abundant barley protein identified which is also found in barley-based beer, while numerous microbial proteins were identified, many originating bacteria from Clostridium, while Methanobrevibacter was the dominant archaeal genus. Thirty-nine proteins were differentially abundant between groups, the majority being more abundant in the PTB group compared to the ATB group. SIGNIFICANCE: Proteomic examination of faeces is becoming a valuable means to assess the health of the gastro-intestinal tract in several species, but knowledge on the proteins present in bovine faeces is limited. This investigation aimed to characterise the proteome of bovine faecal extracts in order to evaluate the potential for investigations of the proteome as a means to assess the health, disease and welfare of cattle in the future. The investigation was able to identify proteins in bovine faeces that had been (i) produced by the individual cattle, (ii) present in the barley-based feed eaten by the cattle or (iii) produced by bacteria and other microbes in the rumen or intestines. Bovine proteins identified included mucosal pentraxin, serum albumin and a variety of digestive enzymes. Barley proteins found in the faeces included serpin Z4, a protease inhibitor that is also found in beer having survived the brewing process. Bacterial and archaeal proteins in the faecal extracts were related to several pathways related to the metabolism of carbohydrates. The recognition of the range of proteins that can be identified in bovine faeces raises the possibility that non-invasive sample collection of this material could provide a novel diagnostic approach to cattle health and welfare.


Assuntos
Proteínas Arqueais , Hordeum , Serpinas , Bovinos , Animais , Serpinas/análise , Proteoma/análise , Cerveja/análise , Proteômica , Espectrometria de Massas em Tandem , Dieta/veterinária , Fezes/microbiologia , Bactérias , Extratos Vegetais , Ração Animal/análise
20.
Nucleic Acids Res ; 51(13): 6927-6943, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37254817

RESUMO

Casposons are transposable elements containing the CRISPR associated gene Cas1solo. Identified in many archaeal genomes, casposons are discussed as the origin of CRISPR-Cas systems due to their proposed Cas1solo-dependent translocation. However, apart from bioinformatic approaches and the demonstration of Cas1solo integrase and endonuclease activity in vitro, casposon transposition has not yet been shown in vivo. Here, we report on active casposon translocations in Methanosarcina mazei Gö1 using two independent experimental approaches. First, mini-casposons, consisting of a R6Kγ origin and two antibiotic resistance cassettes, flanked by target site duplications (TSDs) and terminal inverted repeats (TIRs), were generated, and shown to actively translocate from a suicide plasmid and integrate into the chromosomal MetMaz-C1 TSD IS1a. Second, casposon excision activity was confirmed in a long-term evolution experiment using a Cas1solo overexpression strain in comparison to an empty vector control under four different treatments (native, high temperature, high salt, mitomycin C) to study stress-induced translocation. Analysis of genomic DNA using a nested qPCR approach provided clear evidence of casposon activity in single cells and revealed significantly different casposon excision frequencies between treatments and strains. Our results, providing the first experimental evidence for in vivo casposon activity are summarized in a modified hypothetical translocation model.


Assuntos
Elementos de DNA Transponíveis , Methanosarcina , Humanos , Proteínas Arqueais/genética , Integrases/genética , Methanosarcina/genética , Plasmídeos/genética , Sequências Repetidas Terminais , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...